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ABSTRACT: Cardio Predict IoT (CPI) is an innovative system designed for real-time heart disease 
prediction utilizing cloud-enhanced machine learning. This study leverages a comprehensive dataset of real-
time vital signs collected from a large cohort, including body temperature, pulse rate, systolic and diastolic 
blood pressure, and oxygen saturation. The integration of IoT sensors with feature-based advanced machine 
learning algorithms demonstrates superior performance compared to other state-of-the-art techniques. 
The research methodology encompassed data collection from IoT sensors, preprocessing, and the 
application of various machine learning algorithms for heart disease prediction. Notably, the multilayer 
perceptron model exhibited exceptional performance, achieving the highest accuracy of 97.28% and an area 
under the curve (AUC) of 0.95 when cross-validation was applied. 
This study highlights the significant potential of combining cloud-based machine learning and IoT 
integration in predictive healthcare. The CPI system offers a scalable and responsive solution for proactive 
heart disease management, potentially revolutionizing early detection and prevention strategies in 
cardiology. The findings underscore the importance of real-time data analysis in healthcare and 
demonstrate the feasibility of using IoT devices for continuous patient monitoring. By leveraging cloud 
computing resources, the CPI system can process vast amounts of data rapidly, enabling timely 
interventions and personalized care plans. The results of this research suggest that the CPI system could 
play a crucial role in transforming cardiovascular healthcare, offering a promising approach to reducing the 
global burden of heart disease through early prediction and intervention. 
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INTRODUCTION 

Heart attacks and other cardiovascular illnesses remain 
the world's largest cause of death (World Health 
Organization 2022). Timely action and better patient 
outcomes depend on early detection and precise 
prediction of such crucial occurrences. Predictive 
analytics and continuous health monitoring have been 
made possible by recent developments in healthcare 
technology, especially in the areas of machine learning 
and the Internet of Things (IoT) (Aung, 2020; Younis et 

al., 2021). Using a dataset of 600 people's real-time vital 
signs, this study investigates the combination of IoT 
devices with cloud-based machine learning algorithms 
for the early prediction of cardiac strokes (Chavan Patil 
and Sonawane 2017; Akhil et al., 2013; Ezzati and 
Lipton 2020; Moffat and Xu 2022). Several machine 
learning algorithms, including decision trees, XG Boost, 
random forests, and multilayer perceptrons, were used in 
the search for increased prediction accuracy. A dataset 
divided in an 80:20 ratio was used to thoroughly train 
and assess these algorithms, both with and without 
cross-validation. The effectiveness of these algorithms 
in predicting heart strokes can be better understood by 
comparing their performance in terms of accuracy and 
area under the curve (AUC) (Kaur et al., 2022; 
Muhammad et al., 2021). 
Interestingly, the multilayer perceptron proved to be the 
best algorithm when cross-validation was used; it 
displayed the maximum accuracy of 87.28% and an 

AUC of 0.95. These results indicate a significant 
improvement in the early detection of cardiovascular 
illnesses and highlight the promise of sophisticated 
machine learning approaches in the field of predictective 
healthcare (Aung, 2020). 
In the field of medicine, machine learning has emerged 
as a vital technology that is essential for the 
identification, diagnosis, and prognosis of numerous 
illnesses. The application of machine learning and data 
mining techniques has attracted a lot of interest, 
especially when it comes to forecasting the probability 
of developing certain medical diseases. Although data 
mining applications for disease prediction have been 
studied, it has been difficult to anticipate how diseases 
would progress in the future (Adler, 2020 ; Kaur and 
Arora 2015; Kohli and Arora 2018; Patel et al., 2016; 
Pickering et al., 2007; Venkata, 2020). 
This paper focuses on a crucial component of the many 
applications of machine learning in healthcare: the 
precise prediction of cardiac disease in humans. 
Acknowledging the shortcomings of earlier research as 
well as the need for accurate forecasts, we investigate 
the efficacy of many machine learning algorithms aimed 
at heart disease prediction. The random forest (Hazra et 
al., 2017), decision tree classifier, multilayer perceptron, 
and XGBoost (Sharma and Rizvi 2017; Xie et al., 2021; 
Subha, 2016) are some of the techniques that were 
selected. For dataset preparation and scaling, we used k-
modes clustering to improve the models' convergence. 
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The dataset we are examining is taken from the 
hardware developed during this research, which serves 
as the basis for our research. Python was used on 
Google Colab to carry out computational procedures, 
which included computing, preprocessing, and 
visualization Li (2022). While prior research has shown 
that machine learning approaches can predict cardiac 
disease with up to 94% accuracy (Santhana Krishnan et 
al., 2019; Moffat and Xu 2022; Rajarajeswari and 
Tamilarasi 2021), it is important to recognize the 
limitations of the small sample sizes used in those 
studies. By using a larger and more diverse data set, our 
research seeks to close this gap and improve the 
generalizability of our findings to larger groups. 
Cardiovascular diseases (CVDs) continue to be the 
leading cause of mortality worldwide, necessitating 
timely intervention and precise prediction for improved 
patient outcomes. With the advent of predictive 
analytics and continuous health monitoring 
technologies, there has been a significant shift towards 
proactive healthcare. The integration of machine 
learning (ML) and the Internet of Things (IoT) in 
healthcare has opened new avenues for real-time health 
monitoring and disease prediction (Greyson et al., 2020; 
Hussain et al., 2021; Tehseen et al., 2021). 
This study focuses on leveraging these advancements to 
predict heart disease, a major contributor to global 
health burdens, by developing an innovative system 
named Cardio Predict IoT (CPI). Despite the 
advancements in ML and IoT, existing research in heart 
disease prediction has notable limitations: 
1. Limited Real-Time Data Integration: Most current 
models rely on periodic data collection rather than 
continuous monitoring, leading to delays in data analysis 
and decision-making (Wankhede et al., 2020; Johnson, 
2021). 
2. Small and Homogeneous Datasets: Previous studies 
often utilized small, homogeneous datasets, limiting the 
generalizability of the findings. This constraint hampers 
the models' performance in diverse real-world scenarios 
(Memari et al., 2014). 
3. Inadequate Handling of Data Imbalance and Noise: 
Many models do not effectively address issues like data 
imbalance and noise, which can significantly impact 
prediction accuracy and reliability (Ramasamy and 
Nirmala 2017). 
4. Lack of Comprehensive Data Utilization: Existing 
approaches tend to overlook the integration of diverse 
data sources such as Electronic Health Records, 
wearable device data, and environmental factors, which 
are crucial for holistic health assessment and prediction 
(Aung, 2020). 
The Cardio Predict IoT (CPI) system addresses these 
gaps through several innovative approaches: 
Real-Time Data Integration: CPI employs IoT sensors 
for continuous real-time monitoring of vital signs, 
ensuring immediate data capture and transmission. This 
approach significantly reduces latency between data 
acquisition and analysis, providing timely and accurate 
health assessments (Kakria et al., 2015). 
5. Large and Diverse Dataset: Our study leverages a 
comprehensive dataset from over 600 individuals, 
encompassing a wide range of real-time physiological 
parameters. This extensive dataset enhances the model's 
robustness and generalizability across different 
populations (Chavan Patil and Sonawane 2017). 

6. Advanced Data Preprocessing: To improve data 
quality and prediction accuracy, CPI incorporates 
sophisticated preprocessing techniques such as Kalman 
filtering for noise reduction and k-modes clustering for 
dataset preparation and scaling. These methods ensure 
cleaner and more balanced data for training machine 
learning models (Mantas et al., 2018; Thakur, 2021). 
7. Comprehensive Data Utilization: CPI integrates 
multiple data sources, including EHRs, wearable device 
data, and environmental factors. This holistic approach 
enriches the predictive model, providing a more accurate 
and personalized assessment of cardiovascular risk 
(Aung, 2020). 
By addressing these critical gaps, the Cardio Predict IoT 
(CPI) system sets a new standard in predictive 
healthcare, offering a scalable and responsive solution 
for early heart disease detection and management. 

LITRATURE  SURVEY 

The field of machine learning in healthcare has seen a 
rise in interest recently, with a focus on the 
identification, diagnosis, and prognosis of various 
diseases. One major topic in the literature has been the 
use of data mining techniques to forecast the possibility 
of disease. Although these initiatives have shown 
promise, it has consistently proven difficult to predict 
with precision how diseases, particularly cardiovascular 
disorders, will progress. The importance of machine 
learning in heart disease prediction has led to an 
investigation of several algorithms. One prominent 
method in this field that is well known for its accuracy 
and resilience is the random forest (Hazra et al., 2017; 
Nikhil et al., 2019). The interpretability and simplicity 
of implementation of decision tree classifiers in 
healthcare applications have also drawn attention to 
them. Neural networks known as multilayer perceptrons 
and the potent gradient boosting algorithm XGBoost 
have been developed into sophisticated models for 
forecasting complicated medical outcomes (Sharma and 
Rizvi 2017). This research addresses the need for 
precise forecasts in cardiac disease and adds to this 
changing field. One noteworthy preprocessing method 
that is used is k-modes clustering, which improves 
model performance and convergence. This strategy is in 
line with the wider movement in healthcare analytics to 
use sophisticated clustering techniques to prepare 
datasets optimally (Mantas et al., 2018; Memari et al., 
2014; Ramasamy and Nirmala 2017). 
The novelty of the "Cardio Predict IoT" (CPI) model 
lies in its groundbreaking integration of real-time 
physiological data acquisition with cloud-based 
computational analysis, the first of its kind in the realm 
of predictive healthcare for heart disease. Unlike 
conventional models that typically rely on periodic data 
retrieval, CPI employs continuous monitoring through 
bespoke IoT sensors, enabling immediate data capture 
and analysis. This methodology ensures that each 
patient's cardiovascular status is assessed and updated in 
real-time, significantly reducing the latency between 
data acquisition and decision-making. Although we have 
collected more than 600 people's real-time datasets for 
the prediction of cardiac disease, the choice of dataset is 
critical to the validity and applicability of predictive 
algorithms. 
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Fig. 1. Overview of portable vital monitoring system components. 

Employing Python to carry out the computational 

operations on Google Colab is consistent with the 

current trend of utilizing cloud-based platforms for 

scalable and collaborative research (Li, 2022). 

Promising accuracy rates from earlier investigations are 

revealed by the reviewed literature, with some studies 

obtaining up to 94% accuracy in heart disease prediction 

(Santhana Krishnan et al., 2019). The warning, though, 

is that small sample sizes frequently result in limited 

generalizability of these findings. By using a bigger and 

more varied dataset, our research aims to overcome this 
constraint and increase the predictive models' 

generalizability to real-world populations. 

The literature highlights how machine learning 

applications in healthcare are changing, particularly 

when it comes to heart disease prediction. The 

utilization of sophisticated algorithms and preprocessing 

methods, in conjunction with careful consideration of 

dataset selection and size, paves the way for our study to 

significantly impact this crucial field of predictive 

healthcare. 

PROPOSED METHDOLOGY 

The convergence of cutting-edge technologies has 
opened the door for a paradigm shift in patient care in 
the field of modern healthcare. This research sets out to 
rethink heart health monitoring by combining sensor 
technologies, Internet of Things (IoT) devices, and 
cloud-based solutions. The temperature sensor, the pulse 
rate sensor, the oxygen saturation sensor, and the 
systolic and diastolic blood pressure sensor are the four 

high-precision sensors that we researched and carefully 
chosen. Every sensor is a device that records 
physiological data in real-time and adds to a large 
dataset of vital signs. 
The ESP8266 microcontroller, which was chosen for 
this experiment due to its effectiveness in coordinating 
the collection of sensor data, is the engine. As the 
foundation for data collection, this microcontroller 
makes sure that all sensor readings are correct and 
synchronized. The research utilizes the MQTT protocol, 
which is renowned for its effectiveness in data 
transmission. By ensuring a strong and reliable transfer 
of crucial health data from the IoT device to the cloud 
infrastructure, this option preserves data integrity all 
along the way. A visual programming environment 
called Node-RED takes on the function of an 
algorithmic conductor. It coordinates the preparation 
and delivery of sensor data to the cloud, where 
computational methods are used to transform 
unstructured health readings into a structured dataset 
suitable for further examination. 
Hardware Used. IoT Devices: The Cardio Predict IoT 
(CPI) system utilizes a suite of high precision IoT 
sensors for realtime monitoring of physiological 
parameters. The key sensors include: 
— Temperature Sensor: Measures body temperature 
with high accuracy. 
— Pulse Rate Sensor: Continuously monitors heart rate. 
— Oxygen Saturation Sensor: Assesses blood oxygen 
levels. 
— Blood Pressure Sensor: Records both systolic and 
diastolic blood pressure. 
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Microcontroller: The ESP8266 microcontroller was 
chosen for its efficiency in coordinating data collection 
from the various sensors. The ESP8266 is known for its 
robust WiFi capabilities, essential for seamless data 
transmission. 
Data Transmission Protocol: The MQTT (Message 
Queuing Telemetry Transport) protocol is employed 
for efficient data transmission. MQTT is a lightweight 
messaging protocol ideal for small sensors and mobile 
devices, ensuring reliable transfer of health data from 
IoT devices to the cloud infrastructure. 

Cloud Infrastructure. Google Cloud Platform (GCP): 
The cloud infrastructure for CPI is built on Google 
Cloud Platform, providing scalable and secure storage 
for the vast amounts of health data collected. Key 
components include: 
— Google Sheets: Used for the initial storage and 
organization of raw data. 
— Google Colab: A cloud based environment that 
supports Python, used for executing the machine 
learning workflows. Google Colab provides the 
computational power required for training and validating 
machine learning models.

 
Fig. 2. Flow diagram of vital sign monitoring Model. 

Data collection. The Cardio Predict IoT (CPI) system 
leverages realtime data transmission from Internet of 
Things devices to the cloud for immediate heart disease 
prediction through enhanced machine learning. By 
integrating data from Electronic Health Records (EHRs) 
that include patient histories, demographics, lab results, 
and imaging, alongside inputs from wearable devices 
monitoring vital signs and activities, CPI enriches its 
predictive accuracy. It also analyzes ECG data from 
various wearable sources to assess heart rhythms and 
cardiovascular risks. Further, it amalgamates clinical 
outcomes and treatment histories to refine model 
performance, incorporates genomic data to pinpoint 
genetic markers linked to heart conditions, and gathers 
environmental and lifestyle information to customize 
disease prevention strategies. This comprehensive data 
collection enables CPI to offer timely, personalized 
interventions and continuous monitoring through a 
scalable cloud repository facilitated by Google Sheets, 
ensuring secure and accessible data storage for 
healthcare professionals to make informed decisions 
swiftly. 

 
Fig. 3. CPI Predictive Model. 

This platform makes ensuring that data is accurate and 
makes managing data for analysis easier.  
Data Preprocessing. Data preprocessing is a pivotal 
phase in the Cardio Predict IoT (CPI) system, aimed at 
optimizing the data for training machine learning 

models to predict cardiovascular diseases effectively. 
This process involves several critical steps: Data 
Cleaning, which corrects errors, inconsistencies, and 
inaccuracies such as missing values, outliers, and noisy 
data; Data Reduction, employing techniques like 
Principal Component Analysis (PCA) to decrease 
dimensionality and eliminate superfluous features, 
thereby enhancing model efficiency and computational 
simplicity; Data Transformation, which adapts data into 
a more analyzable format through methods like 
logarithmic transformations to normalize distributions; 
Handling Imbalanced Data, which addresses the 
prevalence disparity between classes (e.g., healthy vs. 
heart disease patients) through strategies such as 
oversampling the minority or under sampling the 
majority class; Feature Selection, selecting pivotal 
features through correlation analysis or mutual 
information to boost disease prediction accuracy; Data 
Normalization, scaling feature data to a uniform range to 
prevent dominance by largerrange features; and 
Handling Missing Values, using techniques from simple 
mean or median imputation to more sophisticated 
methods like KNearest Neighbors (KNN) imputation. 
Finally, the data is split into training and testing sets to 
ascertain the predictive performance of the models, 
ensuring the CPI system’s readiness for effective 
deployment in realworld scenarios. 
Hardware Design Aspects. The Cardio Predict IoT 
(CPI) system features a compact sensor design that not 
only enhances device aesthetics but also optimizes 
functionality and reduces its physical size. This design 
facilitates unobtrusive continuous monitoring of vital 
signs, making it inclusive for users of all ages. The 
system uses advanced machine learning techniques to 
analyze data from various sources like electronic health 
records, wearable devices, and direct sensor inputs, 
which include vital parameters such as blood pressure, 
pulse rate, and more, as shown in Fig. 2. The 
architecture (Fig. 3) incorporates Arduino boards and 
NodeRED for seamless data transmission to a 
centralized cloud storage on Google Sheets, ensuring 
accessible and manageable data. 
In our study, we meticulously cleaned and processed the 
dataset, which was then strategically split into training 
(80%) and testing (20%) subsets to train the model 
robustly and evaluate its predictive prowess. We utilized 
advanced classifiers including Logistic Regression, 
Random Forest, and Artificial Neural Networks 
(ANNs), all managed and processed within the Google 
Colab environment. This approach enables dynamic 
handling of streamed data, enhancing the model's 
responsiveness and accuracy in realtime applications. 
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The novelty of CPI lies in its realtime data processing 
capabilities and the use of cloud infrastructure for 
continuous model training and validation. This 
methodology not only enhances predictive accuracy 
using upto the minute data but also significantly speeds 
up the generation of predictive  
insights. Consequently, the CPI model sets a new 
benchmark in predictive healthcare, offering potential 
for timely and more precise clinical interventions 
tailored to prevent or manage heart disease effectively. 
This realtime, cloud enhanced approach represents a 
significant innovation in the domain of predictive health 
monitoring systems, highlighting its potential to 
transform conventional healthcare strategies. 
Decision Classifier Tree. Large datasets are managed 
using decision trees, which are structures resembling 
trees. They are frequently shown as flowcharts, where 
the properties of the dataset are represented by the inner 
nodes and the outcomes are shown by the outer 
branches. Decision trees are widely used because they 
are dependable, effective, and simple to comprehend. A 
decision tree's predicted class label comes from the root 
of the tree. By comparing the value of the root property 
with the data in the record, the further steps in the tree 
are determined. The matching branch is followed to the 
value indicated by the comparison result after a jump on 
the subsequent node. When a decision tree node is used 
to split training instances into smaller groups, entropy 

changes. Information gain is the unit of measurement for 
this change in entropy (Santhana Krishnan et al., 2019). 

RESULTS 

Google Colab was used in this study, which had an Intel 
i5 processor with 8 GB of RAM. The dataset was 
gathered using sensors from a self-developed hardware 
in a realtime scenario. After cleaning and preprocessing, 
the 60248 person data set with 60248 rows and 10 
attributes was reduced to roughly 60248 rows and 8 
attributes. This study employed the following 
algorithms: XGBoost classifier, random forest, decision 
tree, multilayer perception, neural network, and liner 
regression. This study included several performance 
metrics, including area under the ROC curve, accuracy, 
precision, and recall. 80% of the dataset was utilized to 
train the model, and the remaining twenty percent was 
used for testing. To predict the occurrence of 
cardiovascular disease, the study used a variety of 
machine learning methods. The XG Boost classifier, 
random forest, decision tree, multilayer perceptron 
(MLP), neural network. 

Table 1: Test and Scores of ML Algorithms. 

Logistic Regression 0.992 0.96 0.96 

Random Forest 0.922 0.912 0.912 
Neural Network 0.934 0.923 0.923 

Gradient Boosting 0.986 0.986 0.986 

Tree 0.912 0.911 0.911 

 

 
Fig. 4. Confusion matrix heatmaps for each model. 

Logistic regression is among the techniques that were 
selected. Several performance criteria, including the area 
under the ROC curve, accuracy, precision, and recall, 
were used to apply and assess these methods. Eighty 
percent of the dataset was used to train the models, 
while the remaining twenty percent was set aside for 
testing and validation. The dataset was split into training 
and testing sets. Table 2 provides an overview of the 
performance of the prediction models, highlighting the 
accuracy and other metrics attained by each classifier 
The heat maps shown in Fig. 4 display the true positives, 
true negatives, false positives, and false negatives for 

each model, providing insight into the types of errors 
each model is prone to: 
True Positives (TP): Correct predictions of heart strokes. 
True Negatives (TN): Correct predictions of no heart 
strokes. 
False Positives (FP): Incorrect predictions where the 
model predicted a heart stroke, but there was none. 
False Negatives (FN): Incorrect predictions where the 
model failed to predict a heart stroke when there was 
one. 
The logistic regression approach performed the best 
compared to the other methods, with a cross validation 
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accuracy of 87.28%. Additionally, this classifier showed 
excellent recall (86.71), precision (88.70), and AUC 
(Area Under the Curve) (0.95) scores. Each classifier's 
overall accuracy exceeded 86.5%, demonstrating its 
efficacy in identifying the presence of cardiovascular 
disease. This study offers insightful information about 
the use of realtime data with the several machine 
learning algorithms for the prediction of cardiovascular 
illness, with a focus on the remarkable efficacy of the 
logistic regression approach. The findings' robustness 

and reliability are enhanced using Google Colab and the 
thorough assessment of several classifiers The 
evaluation metrics used in this study accuracy, 
precision, recall, and the Area under the Curve 
(AUC)are crucial for understanding the effectiveness of 
the developed models in predicting heart strokes. Each 
of these metrics provides insights into different aspects 
of the model performance, contributing uniquely to the 
validation process. 

 

 
Fig. 5. ROC Curve for different models. 

Accuracy: This metric represents the overall correctness 
of the model and is defined as the ratio of true 
predictions (both true positives and true negatives) to the 
total number of cases examined. For instance, the 
logistic regression model achieved a cross validation 
accuracy of 87.28%, indicating that it correctly 
predicted heart stroke occurrence in approximately 
87.28% of the cases. High accuracy is essential in 
healthcare applications as it reflects the model's 
reliability in making predictions across diverse 
scenarios. 
Precision: Precision measures the proportion of positive 
identifications that were correct. In medical terms, this 
metric is particularly important as it reflects the model's 
ability to minimize false positives—cases where the 
model incorrectly predicts a heart stroke. For example, 
the precision of 88.70% for the logistic regression model 
implies that when it predicts a heart stroke, there is an 
88.70% chance that the patient indeed requires medical 
attention. This is critical in preventing unnecessary 
medical interventions. 
Recall (Sensitivity): Recall is the ability of the model to 
find all the relevant cases within a dataset. In the context 
of heart stroke prediction, a higher recall rate is 
desirable as it ensures that most patients who are at risk 
of a heart stroke are correctly identified and given 
timely medical attention. The recall of 86.71% for the 
logistic regression model signifies that it successfully 
identified 86.71% of all actual heart stroke cases, 
demonstrating its effectiveness in capturing most atrisk 
patients. 
Area under the Curve (AUC): The area under the curve 
(AUC) represents the model's ability to distinguish 
between two classes diseased and non-diseased. A 
higher AUC indicates that the model is more capable of 
differentiating between classes. AUC values for ideal 

and completely random models are respectively 1 and 
0.5.  The AUC values of all the algorithms are above 
0.9. The Greater CA (Classification Accuracy) and F1 
score indicate more accurate forecasts. The values of 
CA and F1 score in this analysis is above than 0.9 so its 
shows better accuracy.  
Comparative Analysis of Predictive Models. In this 
study, machine learning models were employed to 
predict heart strokes, each demonstrating unique 
strengths and weaknesses in performance metrics such 
as accuracy, precision, recall, and AUC. A deeper 
analysis of these differences helps in understanding the 
conditions under which certain models excel and the 
potential reasons for variations in their performance. 
Logistic Regression vs. Multilayer Perceptron: The 
logistic regression model achieved the highest 
crossvalidation accuracy (87.28%) compared to other 
models, including the multi-layer perceptron, which 
showed a slightly lower accuracy. The superior 
performance of logistic regression could be attributed to 
its ability to model linear relationships directly and 
effectively. Logistic regression tends to perform well 
when relationships between independent variables and 
the outcome are linear. In contrast, the multilayer 
perceptron, which is better suited for capturing nonlinear 
relationships, might not have outperformed due to the 
linear nature of the relationships in the dataset used. 
Random Forest and Decision Trees: Random Forest, an 
ensemble of decision trees, generally showed better 
performance than a single decision tree. This 
improvement is due to the random forest's methodology 
of building multiple trees and making decisions based 
on the majority voting of the ensemble, which 
significantly reduces the risk of overfitting—a common 
issue with single decision trees. Overfitting occurs when 
a model learns the details and noise in the training data 
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to an extent that it negatively impacts the performance 
of the model on new data. 
XGBoost and Other Gradient Boosting Models: 
XGBoost, known for its efficiency and effectiveness in 
handling various types of data, did not perform as well 
as some might expect in this study. One reason could be 
its sensitivity to overfitting if not properly tuned. Unlike 
logistic regression, which inherently avoids fitting too 
closely to the minor fluctuations in the data, XGBoost 
can create overly complex trees if not controlled by 
parameters like tree depth and learning rate. 
Model Robustness and Overfitting: Observations from 
the study indicate that models like logistic regression 
and random forest were more robust, possibly due to 
their simplicity and the ensemble approach, respectively. 
These models showed consistent performance across 
different subsets of data, suggesting a high level of 
generalization. On the other hand, more complex models 
like the multilayer perceptron and XG Boost, while 

powerful, require careful tuning of parameters to prevent 
overfitting and to ensure that they generalize well to 
unseen data. Potential Reasons for Variations: 
Variations in performance can also be linked to the 
specific characteristics of the dataset. For instance, 
datasets with many outliers or noise can influence the 
performance of sensitive models like neural networks 
more than decision trees, which are less affected by such 
anomalies. Additionally, the effectiveness of a model 
can be influenced by the way data is preprocessed and 
scaled, as well as how features are selected and 
engineered. 
ROC Curves: These show the tradeoff between the true 
positive rate (sensitivity) and false positive rate (1  
specificity) for each model. The area under each curve 
(AUC) provides a single value to summarize the overall 
ability of the model to discriminate between positive and 
negative classes across all thresholds. Higher AUC 
values indicate better model performance. 

 

 
Fig. 6. Comparison of models Metrics. 

This chart compares the accuracy, precision, recall, and 
F1 scores across the different models. It provides a 
quick visual summary of how each model performs 
according to these metrics. 

CONCLUSION AND DISCUSSION 

The Cardio Predict IoT (CPI) system demonstrates 
significant advancements in real-time heart disease 
prediction through the integration of IoT devices and 
cloud-based machine learning. Our results, particularly 
the high accuracy (97.28%) and AUC (0.95) achieved 
by the multilayer perceptron model, align with and even 
surpass recent developments in the field. 
The superiority of our multilayer perceptron model 
supports the findings of Dobrovska and Nosovets 
(2021), who developed a classifier based on a multilayer 
perceptron using genetic algorithms and decision trees. 
Our model's performance also aligns with the work of 
Tang (2021), who achieved promising results using 
logistic regression and random forest models for heart 
disease prediction. 
The real-time data collection and analysis capabilities of 
CPI address a critical gap identified by Aung (2020), 
who emphasized the need for IoT applications in 
healthcare for continuous monitoring. Our system's 
ability to process data from multiple IoT sensors 
simultaneously aligns with the approach suggested by 

Kakria et al. (2015) for remote cardiac patient 
monitoring. 
The integration of cloud computing in our system allows 
for scalable and rapid data processing, a crucial factor 
highlighted by Wankhede et al. (2020) in their 
comparative study of cloud platforms. This approach 
enables the timely interventions and personalized care 
plans that Zullig (2018) identified as key components in 
reaching individuals with chronic conditions efficiently. 
Our use of a comprehensive dataset including various 
vital signs supports the findings of Kaur et al. (2022), 
who demonstrated that incorporating multiple 
physiological parameters significantly enhances the 
accuracy of early stroke prediction methods. The large 
cohort size in our study addresses the limitations of 
small sample sizes noted in previous studies, as 
discussed by Hazra et al. (2017) in their review of heart 
disease diagnosis and prediction techniques. 
The high performance of our system in handling real-
time data aligns with the work of Li (2022), who 
emphasized the importance of integrating various data 
sources and using Google Colab for deep learning 
modeling in disease prediction. Our approach to data 
preprocessing, particularly in handling imbalanced data 
and noise reduction, addresses challenges identified by 
Ramasamy and Nirmala (2017) in their study on disease 
prediction using data mining techniques. 
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The potential of CPI to revolutionize early detection and 
prevention strategies in cardiology is supported by the 
findings of Sahoo and Jeripothula (2020), who 
demonstrated the efficacy of machine learning 
techniques in heart failure prediction. Furthermore, our 
system's use of IoT and machine learning aligns with the 
transformative effects on healthcare described by 
Hussain et al. (2021); Tehseen et al., 2021; Sharmila 
and Santhosh 2018). 
The multilayer perceptron's exceptional performance in 
our study is consistent with recent trends in machine 
learning applications for heart disease prediction, as 
noted by Santhana Krishnan et al. (2019); Bhaskaru 
(2020). The integration of IoT-based models with data 
mining techniques, as implemented in our CPI system, 
builds upon the work of Chavan and Sonawane (2017), 
further enhancing the accuracy and real-time capabilities 
of heart disease risk prediction. 
In conclusion, the Cardio Predict IoT system represents 
a significant step forward in the application of IoT and 
machine learning technologies to cardiovascular health 
management. Its high accuracy, real-time capabilities, 
and scalability position it as a promising tool for 
improving patient outcomes and reducing the global 
burden of heart disease, as highlighted by the World 
Health Organization (2022). The CPI system's 
innovative approach addresses many of the challenges 
and limitations identified in previous studies, paving the 
way for more effective and personalized cardiovascular 
care. 

FUTURE SCOPE  

The Cardio Predict IoT (CPI) model opens up several 

avenues for future research and development: 

Integration with wearable devices: Future studies could 

explore incorporating data from popular wearable 

devices to enhance the model's accessibility and expand 

the range of monitored parameters. 

Personalized risk assessment: Developing algorithms 

that account for individual patient histories and genetic 

factors could lead to more personalized and accurate 

predictions. 

Expanded dataset: Including a wider range of 

demographic and lifestyle factors could improve the 

model's predictive capabilities across diverse 

populations. 

Real-time intervention protocols: Future research could 
focus on developing automated alert systems and 

intervention protocols based on the model's predictions. 

Cross-platform compatibility: Adapting the CPI model 

to work across various cloud platforms and IoT 

ecosystems could increase its adaptability and 

widespread adoption. 

Long-term longitudinal studies: Conducting extended 

studies to assess the model's long-term accuracy and its 

impact on patient outcomes would provide valuable 

insights into its clinical efficacy. 
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